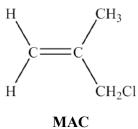
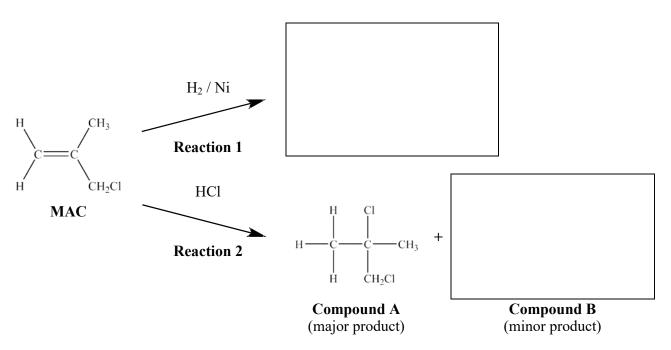

- 1. How many stereoisomers are there of CH₃CH=CHCH(OH)CH₂CH=CH₂?

[1]


2. Hydrogen bromide reacts with 3-methylbut-1-ene.

What is the structure of the major intermediate formed in the mechanism?

PhysicsAndMathsTutor.com


3. Methyl allyl chloride, MAC, is a chemical used in the production of insecticides. The structure of MAC is shown below.

(a) (i) Give the molecular formula of MAC.
[1]
(ii) Draw the skeletal formula of MAC.
[1]
(iii) MAC has several structural isomers. State what is meant by *structural isomers*.
[1]
(b) MAC is highly flammable. When MAC burns, one of the products formed is a toxic gas.
1.321 g of this gas occupies 1.053 dm³ at 100 kPa and 350 K.

Use the information provided to suggest the identity of the gas.

(c) The flowchart below shows some reactions of MAC.

- (i) Complete the flowchart above.
 - Draw the structure of the product of **Reaction 1**.
 - Draw the structure of the minor organic product of **Reaction 2** (Compound **B**).

[2]

[3]

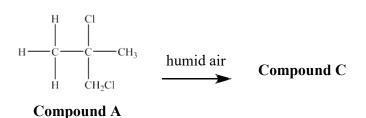
(ii) Reaction 2 creates a mixture of compounds. Compound A is the major product.

Draw the mechanism for the formation of compound A.

Use curly arrows and show relevant dipoles.

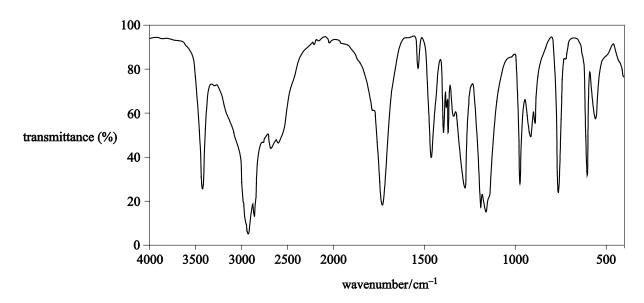
(iii) Explain why compound **B** is the minor product of **Reaction 2**.

.....[1]


(iv) MAC reacts with water in the presence of $AgNO_3(aq)$ and ethanol.

Draw the structure of the organic product of this reaction.

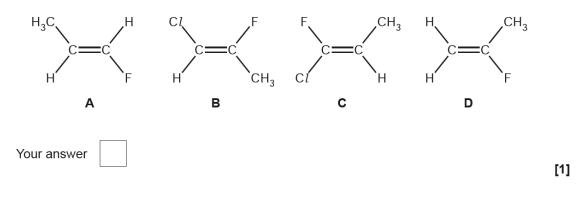
State what you would **observe** in this reaction and identify the compound responsible for the observation.


PhysicsAndMathsTutor.com

(d) Compound A reacts slowly in humid conditions to form compound C.

Compound **C** contained the following percentage composition by mass: C, 46.1%; H, 7.7%; O, 46.2%

The infrared spectrum of compound C is shown below.



Using the information on the previous page, deduce the structure of compound C.

Give your reasoning.

••••••	
	structure = [5]
	structure = [5

4 Which molecule is a Z-isomer?

- 5. This question is about unsaturated hydrocarbons.
 - (a) Compound A and compound B are isomers.

		compound A	compound B				
	Con	npound A has a lower melting point t	has a lower melting point than compound B .				
	Sug	gest why.					
(b)	 Con)H, exists as <i>cis</i> and <i>trans</i> stereoisomers.				
(0)	(i)	Name compound C .					
	()		[1]				
	(ii)	Define the term stereoisomers.					

(iii) Draw the structures of the *cis* and *trans* stereoisomers of compound **C**.

trans
_

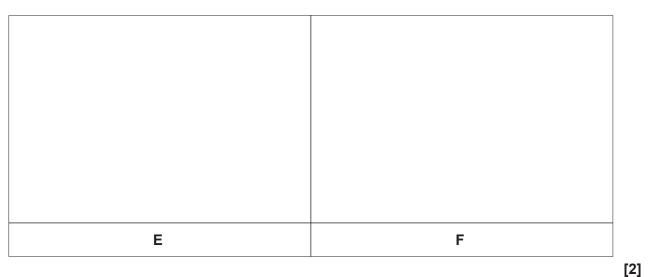
(c) The C=C group in an alkene contains a π -bond.

Complete the diagram below to show how p-orbitals are involved in the formation of a π -bond.

[1]

[2]

(d) Compound **D**, shown below, reacts with hydrogen bromide by electrophilic addition. A mixture of two organic compounds, **E** and **F**, is formed.

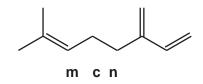


compound

(i) Suggest how an HBr molecule can act as an electrophile.

......[1]

(ii) Draw the structures of the two organic compounds ${\bf E}$ and ${\bf F}.$



(iii) Outline the mechanism of the reaction between compound **D** and hydrogen bromide to form **either** compound **E** or compound **F**.

Include curly arrows and relevant dipoles.

(iv) Which of E or F is the major organic product?
 Explain your answer.
 Major organic product
 Explanation

(e) Myrcene, C₁₀H₁₆, is a naturally occurring hydrocarbon containing more than one carbon-carbon double bond.

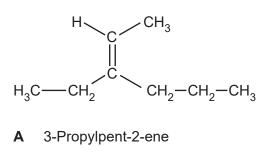
(i) Reaction of 204 mg of myrcene with hydrogen gas produces a saturated alkane.

Calculate the volume of hydrogen gas, in cm³ and measured at RTP, needed for this reaction.

Show your working.

(ii) β -Carotene is a naturally occurring unsaturated hydrocarbon found in carrots. A β -carotene molecule contains 40 carbon atoms, has two rings, and a branched chain.

 $0.0200\,\text{mol}$ of $\beta\text{-carotene}$ reacts with $5.28\,\text{dm}^3$ of hydrogen gas to form a saturated hydrocarbon.

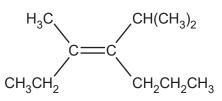

Using molecular formulae, construct a balanced equation for this reaction.

Include relevant calculations and reasoning.

Equation	[4]
----------	-----

PMT

6. What is the name of the compound below?



- B 3-Propylpent-3-ene
- **C** 3-Ethylhex-2-ene
- D 4-Ethylhex-4-ene

[1]

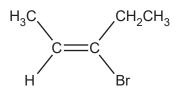
7. The structure of a stereoisomer is shown below.

Which term correctly describes this stereoisomer?

- B trans-
- **C** *E*-
- **D** *Z*-

Your answer

PhysicsAndMathsTutor.com

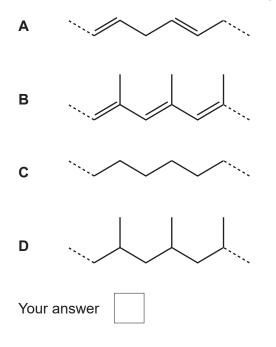

8. Which types of bonds are broken and formed in the reaction of ethene and bromine?

	Types of bond broken	Types of bond formed
Α	σ	π
В	π	σ
С	σ and π	π
D	σ and π	σ

Your answer

PMT

9. What is the name of the compound below?



- A E-3-bromopent-2-ene
- B E-3-bromopent-3-ene
- C Z-3-bromopent-2-ene
- D Z-3-bromopent-3-ene

Your answer

PhysicsAndMathsTutor.com

10. Which structure shows a section of poly(propene)?

